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Critical behavior in a polymer blend

H. Sato, N. Kuwahara, and K. Kubota

(Received 5 September 1995)

Static and dynamic critical behaviors were studied for a mixture of polydimethylsiloxane
(M,=1.91X10% M, /M, <1.03) and polyethylmethylsiloxane (M, =1.40X 10*, M,, /M, < 1.02) using
coexistence curve, turbidity, light scattering, and viscosity measurements. The critical point was deter-
mined precisely from the coexistence curve as the critical composition W, pgys=55.04 wt % and the
critical mixing temperature T, =30.622°C. The critical exponents for the shape of the coexistence curve
(B), the osmotic compressibility (v ), the long-range correlation length (v), the correction for the static
correlation function (7)), and the shear viscosity (@) are 0.32740.003, 1.25+0.02, 0.63+0.02,
0.038+0.003, and 0.029+0.003, respectively, with £,=1.621+0.05 nm. The present critical polymer
blend belongs to the universality class of the three-dimensional Ising model, similar to simple binary
liquid mixtures. The crossover from Ising to mean-field behavior was not observed, and this observation
is consistent with the crossover function of recent theoretical work. A clear shear effect on the viscosity
was observed near the critical point. The critical part of the diffusion coefficient is rather well represent-
ed by the dynamic scaling function based on mode coupling theory, confirming the validity of the dy-
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namic scaling concept for the polymer blend.

PACS number(s): 64.70. —p, 61.41.+e¢, 64.60.Fr

I. INTRODUCTION

Numerous experiments on the critical behaviors in
polymer-polymer mixtures have been performed, and the
validity of the three-dimensional Ising-model universality
has been confirmed in the vicinity of the critical point by
use of small-angle neutron scattering (SANS) [1,2], light
scattering LS [3,4], and the phase diagram [5,6]. Howev-
er, most of the experiments have been carried out without
the accurate determination of the critical mixing point.
For example, Meier, Momper, and Fisher have studied
the critical behaviors for a mixture of polydimethylsilox-
ane (PDMS) and polyethylmethylsiloxane (PEMS) [3].
They have estimated a critical composition by the expec-
tation @, pems =N pioms /(N pims T NpHms ) with N being
the degree of polymerization of the respective polymer.
By use of the critical point established by the concentra-
tion dependence of the spinodal temperature, we have in-
vestigated the critical behavior in a mixture of polys-
tyrene and polymethylphenyisiloxane over the range
0.045<T—T,<2.4,° C, where T, is the critical mixing
temperature [4]. The exponents for the osmotic compres-
sibility x+ and the long-range correlation length £ are in
good agreement with the three-dimensional Ising model
universality, similarly to binary simple liquid mixing [7].
The crossover behavior from Ising to mean-field behavior
was suggested for polymer blends by de Gennes. The
characteristic crossover temperature, the Ginzburg num-
ber G, is also calculated from the relation G, <N ~! [8].
Therefore, the critical region is expected to be very nar-
row and the mean-field formalism becomes valid even
near the critical point, quite different from the case of
simple binary liquid mixtures. Although a polymer blend
is expected to obey Ising-like behavior in the immediate
neighborhood of the critical mixing point, an exact study
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concerning the critical behaviors in a polymer blend with
accurate phase diagram and/or coexistence curve is still
necessary. In the case of polymer blends, the cloud point
curve often deviates from the coexistence curve, and the
critical point is not located at the top of the cloud point
curve because of its remaining polydispersity. Hence, it
is necessary to check the criticality by the direct deter-
mination of the coexistence curve. In previous work, we
have determined the critical mixing point from the accu-
rate measurement of the coexistence curve for a polymer
blend [9]. Consequently, it is possible to approach very
closely to the critical point and to observe the limiting
anomalous behavior of various quantities. This is of
essential importance for detailed studies of critical phe-
nomena in a polymer blend.

In this paper we report experimental studies of the crit-
ical behaviors for a mixture of PDMS and PEMS. The
criticality was ascertained clearly on the basis of the
coexistence curve [9]. The dynamical critical behaviors
of the transport coefficients, the viscosity and diffusion
coefficients, as well as of the static quantities, osmotic
compressibility and long-range correlation length, were
measured directly and analyzed with the aid of the recent
theoretical work on the shear rate effect for fluctuation
[10,11]. The critical PDMS-PEMS mixture was found to
belong to the same universality class as the three-
dimensional Ising model.

II. GENERAL FORMULATION

Here we summarize briefly the general formulation of
the critical behaviors relevant to the present work.

A. Coexistence curve

Near the critical mixing point, the coexistence curve is
well expressed by the scaling form
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Wt —W " =B¢f, (1)

where W™ and W™ are the concentrations of PEMS in
coexisting concentrated and dilute phases, respectively. 8
is the critical exponent for the coexistence curve and ¢ is
the reduced temperature defined as e=|T—T,|/T.,.

B. Static structure function

According to the theory of critical phenomena the stat-
ic structure (correlation) function S(q), which is propor-
tional to the susceptibility and/or the scattered light in-
tensity I(q), can be expressed in a scaling form as [12]

S(q)=S(q=0)g(qg€)=A,xrgq§) , (2)

where A is treated as a constant parameter insensitive to
the temperature and g is the scattering vector. g(g§) cor-
responds to the Fourier transform of the correlation
function and is expressed in the Ornstein-Zernike form as

g(gé) 1=(1+42%?) . 3)

Xt is the isothermal osmotic compressibility and £ is the
correlation length. Both diverge near the critical point as

XT=X10€ " >» 4)
E=6e ™", ®

with ¢ and v being the critical exponents of Y and &, re-
spectively. Fisher proposed a modified Ornstein-Zernike
correlation function of the form g(g&)~!=(1
+q2%£%)!77/2 [13]. 7 is a small correction factor and it
can be examined from the £ dependence of Y, (that is,
&2/x 1 vs &) using the hyperscaling relation

y=Q2—nv. (6)

C. Turbidity

The turbidity 7 is defined as the attenuation of
transmitted light intensity per unit optical path length,
and it results from the scattering when the sample does
not absorb the incident beam. Using the Ornstein-
Zernike form for the scattering function as in Eq. (3), the
turbidity can be written as [14]

T=A,x7G(2), (7)

where A4, can be treated as a constant insensitive to tem-
perature and

G(z)=[(222+2z+1)/23In(1+2z)—2(1+z) /22, (8)
z2=2(qo€)?, 9)

where go(=2m/A,) is the magnitude of the incident wave
vector with A, being the wavelength of the incident beam.

D. Dynamic structure function and transport coefficient

Light scattering detects composition fluctuation, which
is the order parameter of the critical mixture sample. Its
time correlation function can be represented by an ex-
ponential decay law of the form
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(Co()C_4(0))=S(glexp(—T 1)
=S(q)exp[ —D(q)q%t], (10)

where S(g) [=(|C,(0)|*)] is the static correlation func-
tion with correlation length & given by Eq. (2) and D(q) is
the g-dependent diffusion coefficient obtained from the
decay rate I'; of the time correlation function. The
diffusion coefficient D(q) is related to the Onsager kinetic
coefficient L by [15]

D(q)=L/S(q) . (11)

In the treatment of dynamic critical phenomena, the
transport coefficients, such as the Onsager Kkinetic
coefficient L and the shear viscosity 7, can be separated
into two terms [16,17]. One is the background contribu-
tion, Ly and 75, and the other is the critical or singular
contribution, L, and 7., so that

L=L.,+Ly, (12)
n=n.+tnp . (13)

Here, L. and 7). represent the transport coefficients due
to the critical fluctuation, while Ly and 7mp represent
them without the critical fluctuation. Then, the diffusion
coefficient also can be separated into two terms with the
assumption that the background (noncritical) contribu-
tion of S(gq) to the measured S (q) is negligible, which is
valid enough in the critical region, as

D=D,+Dy=L, /S(q)+Ly/S(q) . (14)

The asymptotic equations of the diffusion coefficient and
the shear viscosity satisfy the following equations accord-
ing to the theories [18]:

D,=(kyT /6mm€)QGE) , (15)
1=n5(QoE)*=mn5(Qoéx)Ve™?, (16)

where the dynamic scaling function Q(g¢£) is represented
by the Kawasaki function following from the mode cou-
pling theory [19] as

Qx)=Qg(x)=(3/4x?)[1+x%+(x3>—1/x) arctanx ] .
17

On the other hand, Burstyn et al. introduced the correc-
tion factor S(x) including a viscosity correction into the
dynamic scaling function for the deficiency of the
Kawasaki function at large scaling variable g£ [20,21]:

QUx)=Qp(x)[S(x)]?, (18)
S(x)=a(1+b%*x?)'/?, (19)

where @ and b are constants and are approximated to
a’=R =1.01, with R being the dynamic amplitude ratio,
and b=0.5 [20]. Moreover, the background contribution
Dp can be approximated as [22,23]

Dy=(kgT/16m5E)1+q%%)/q.E , (20)

where g, is a parameter related to Q, and g, the Debye
cutoff wave number, and is obtained from [24]
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05! =4e* (g +g5 ) . @y

Thus the dynamical scaling behavior can be examined by
using the reduced diffusion coefficient D * defined as

D*=(6mné/kyT)D, . (22)

On the other hand, 7 is represented by the well known
Arrhenius equation of the form

np=A,exp(B,/T), (23)

and z is predicted to be 0.054 by the mode coupling
theory [25]. ¢ is given by

¢=_Cv . (24)

E. Shear effect

The shear rate effect on the critical phenomena has
been discussed by Onuki and Kawasaki [10]. A shear ap-
plied to the measured test sample makes the fluctuations
anisotropic and destroys the correlations eventually. This
crossover will occur when the lifetime 7; of the fluctua-
tion becomes comparable to the intrinsic time of shear,
the inverse of the shear rate S, and the crossover temper-
ature T is given by

T,=T,[1+(169E3/kpy T, ) 3S1/3V] . (25)

In the eventual strong shear region, St; > 1, the critical
fluctuation should show a mean-field behavior. In the
presence of shear the critical temperature is also expected
to be affected by the reduction of fluctuation and the crit-
ical temperature under the shear, T, is predicted to be

T*=T,—v(T,—T,), | (26)

where v is a numerical constant and is predicted to be %

[10,11,26]. Therefore, the critical behavior of the shear
viscosity must be taken into account in this shear rate
effect.

III. EXPERIMENT

Polydimethylsiloxane having kinematic viscosity of 300
cS obtained from Shin-Etsu Co. was fractionated into
seven fractions by solution fractionation using isopropyl
alcohol as the solvent. A fraction characterized as
M,=1.91X10* and M, /M, <1.03, with M, and M,
being the weight- and number-averaged molecular
weights, respectively, was used in this study. Polyethyl-
methylsiloxane specially synthesized by Shin-Etsu Co.
was fractionated into 11 fractions by solution fractiona-
tion using n-propyl formate as the solvent. A fraction
characterized as M, =1.40X 10* and M, /M, <1.02 was
employed as the sample. Our polymer samples are al-
most free from the polydispersity effect. The values of
density and refractive index of PDMS and PEMS at 25 C
are 0.969 and 0.977 g/cm?, and 1.403 and 1.427, respec-
tively. Both the density and refractive index of PDMS
and PEMS are matched well. Thus our mixture sample
greatly reduces the effects of multiple scattering and sedi-
mentation.
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The detailed experimental procedure for the measure-
ments of coexistence curve and turbidity has been de-
scribed elsewhere [9,27]. The mixture of 55.05 wt %
PEMS in PDMS, which was determined to be the critical
composition from the phase diagram, was prepared in a
dry box under dry nitrogen for the measurements of the
static and dynamic scattering and the shear viscosity.
Particular attention was paid to avoiding moisture in the
air. The homogeneous mixture, heat treated at 50" C and
well stirred, was filtered into a cylindrical cell of 14 mm
optical path length and a specially designed Ubbelohde-
type viscometer through a Millipore filter (pore size =
0.20 um), and then the polymer samples in the cylindrical
cell and in the viscometer were flame sealed under vacu-
um. Those mixtures were thoroughly stirred with a piece
of magnetic material which was inserted in the cell and in
the viscometer. The cell for the light scattering measure-
ment was set in a thermostattred silicon oil bath whose
temperature could be controlled to within 1 mK over a
day, and the viscometer was set in a thermostatted water
bath regulated within 1 mK over two days in the experi-
mental temperature range. The temperature was moni-
tored by a quartz thermometer.

The angular dependence of the scattered light intensity
was measured using a specially designed light scattering
photometer with a He-Ne laser operated at 632.8 nm as a
light source. The alignment of the photometer was
checked by using a cyclohexane solution of low molecular
weight polystyrene (M, =1.02X 10*). The observed scat-
tered light intensity after scattering volume correction
was found to be constant within 1% over an angular
range of 6=20-130. Intensity measurements were car-
ried out in the temperature range 0.020<T — T, <5.413
C. The scattered light intensity at a temperature about
15" C away from T, was used as the background intensity
and was subtracted from the measured scattered light in-
tensity. The intensity was corrected for attenuation using
turbidity data. Since the turbidity of our sample is low
enough, no multiple-scattering correction was undertak-
en. The dynamic light scattering measurement (time
correlation function measurement) was performed at
0=60, 90, and 130" in the temperature range
0.020=T—T,= 9.436" C. The intensity-intensity time
correlation functions were measured with a 48-channel
Malvern correlator. Viscosity measurements were per-
formed in the temperature range 0.010< 7 — T, < 11.208’
C using the modified Ubbelohde viscometer which was
calibrated by comparing the flow time of n-amyl alcohol
(flow time is about 101 s) with density correction. The
shear rate was calculated using a Poiseuille law for capil-
lary flow assuming Newtonian flow [28], and the aver-
aged shear rate at the closest temperature to T, was

about 2571,

IV. RESULTS AND DISCUSSION

A. Phase diagram

The coexistence curve near the critical mixing point is
shown in Fig. 1 together with the diameter. An accurate
coexistence curve for the polymer-polymer mixture was
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FIG. 1. Coexistence curve (O) and diameter (@) of a poly-
mer blend of PDMS and PEMS. The critical point was deter-
mined from their intersection; W, pgys=155.0410.04 wt % and
T.=30.622+0.005 C.

obtained, although a thorough attainment of phase equi-
librium between two coexisting phases needs three weeks
near the critical point. The coexistence curve is almost
symmetric, the diameter is almost perpendicular, and a
deviation from the rectilinear was not observed. From the
intersection of the coexistence curve with the diameter,
the critical concentration and temperature were deter-
mined as W_ppys=55.0410.04 wt % and T,=30.622
+0.005 C. The critical concentration expected from
mean-field theory is 56.2 wt %, showing a little deviation
from the exact one. Figure 2 shows the double-
logarithmic plot of the concentration difference between
the concentrated and dilute phases as a function of
T.—T. The simple scaling form of Eq. (1) describing the
coexistence curve holds very well, and the linear fit to Eq.
(1) for the data at T—T, <2 C gives f=0.327+0.003
with B=97.91+3.0 wt %. The residuals are quite small
and do not show any systematic deviation (variance
<1%). The exponent S is in very good agreement with

10%E
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10 10 1 1
T-T (K 0 0
FIG. 2. Double-logarithmic plot of the concentration

difference between two coexisting phases of a PDMS and PEMS
mixture as a function of 7,—7. W™ and W~ denote the con-
centration of PEMS in the concentrated and dilute phases, re-
spectively. The slope of the solid line is 0.327+0.003.
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the experimental values for simple binary liquid mixtures
and the three-dimensional Ising model [29-31]. This 8
value differs clearly from the mean-field prediction of 0.5,
and the concentration difference in Fig. 2 does not show a
crossover between Ising and mean-field behavior in the
present temperature range. Coexistence curves for binary
polymer mixture have been reported by Chu et al. [5]
and Budkowski et al. [6]. Both have reported that the
coexisting phase equilibrium behavior is well expressed
by mean-field theory. However, both measurements were
carried out fairly far away from the critical point, be-
cause of the experimental difficulty due to the high shear
viscosity of the sample polymers. According to the
theoretical treatment of crossover behavior [32-34], the
crossover from mean-field to Ising behavior should take
place closer to the critical point with increasing molecu-
lar weight. Thus it is essential to come very close to the
critical point for studying the critical behavior. In the
present case, it is expected that the crossover may take
place at about a few ~ C away from T, from an evaluation
based on the results of Meier et al. [34], and that the
three-dimensional Ising behavior can be observed.

B. Static structure function

Typical results of static light scattering measurements
are shown in Fig. 3. The scattered light intensity at a
temperature about 15 C away from T, was used as the

-1
[ (arb.units )

o L A i 1 1 . 1 s A
0 1 2 3 4 5 6 7 8 9 10
<10 o 2 -2
10"q*(cm™)

FIG. 3. Ornstein-Zernike plot of the scattered light intensity
as a function of g2 at a few typical temperatures. Attenuation
due to turbidity was corrected for. The temperature of the curve
is 35.997, 35.002, 34.015, 33.229, 32.594, 32.189, 31.890, 31.681,
31.516, 31.130, 30.968, 30.846, 30.752, and 30.656 C from the
top to the bottom, respectively.
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background intensity and was subtracted from the mea-
sured scattered light intensity at the experimental tem-
perature in order to avoid the possible contributions of
particle scattering of the polymer molecules. The present
evaluation of the background intensity is not a unique
one; other methods are possible. Indeed, Meier et al.
used the intensity estimated from the volume fraction. If
we are interested in the critical behavior very near the
critical point, however, the method used does not make
any essential difference. As shown in Fig. 3, the
Ornstein-Zernike plot of Egs. (2) and (3) gives reasonably
good straight lines, suggesting the validity of the static
correlation function of Eq. (3). Although no downward
curvatures at small scattering angles were observed near
T,, slight deviations from parallel slopes at temperatures
closer to T, are observed, indicating nonzero 7 in Eq. (6)
[35-37].

The inverse of the zero-angle scattered light intensity
I5! and the squared inverse of the correlation length £ 2
obtained through Eq. (3) are shown in Fig. 4 as a func-
tion of temperature. Both curves show no linear depen-
dence on the temperature, rejecting the mean-field
behavior especially near T,. The temperatures extrapo-
lated to I, ! =0 and £ 2=0 coincide perfectly with each
other and with the result of the coexistence curve. These
facts indicate firmly the criticality of the critical point
determined above.

Double-logarithmic plots of I, ! and £ as a function of
the reduced temperature are shown in Fig. 5. Both are
well represented by the power-law relations of Eqs. (4)
and (5) in almost the total experimental temperature
range, and ¥y =1.25+0.02, v=0.63%0.02, together with
£0=1.621+0.05 nm were obtained. These values of the
critical exponents are in quite good agreement with the
three-dimensional Ising model. The magnitude of &, is
comparable with the reported value of 1.67 nm for
PDMS-PEMS [34], 1.0 nm for polystyrene-poly-
methylphenylsiloxane (PS-PMPS) [4], and 0.70 nm for
deutero-polybutadiene-polystyrene (d-PB-PS) [37].

The crossover from Ising to mean-field behavior in po-
lymer blends has been studied intensively by Meier et al.
and Schwahn et al., and it has been shown that the cross-

over behavior is well expressed by the crossover function
given in Eq. (27) of the asymptotic crossover model by in-
troducing a Ginzburg number G; [32-34]. The crossover
function as derived by Belyakov and Kiselev [33] is given
by

100 ¢ — 10!
107! | 7
L B 10°
— - ~~
8 02 L ]
5 = . g
o - A ~~
£ B 7 wn
- . )
10_3 E (@]
- <«
- : 10!
1074 L :
E -
10'5 L 111 Illlll_ 111t L 10—2
107° 104 103 102 107"

€

FIG. 5. Double-logarithmic plots of I5 ! and £ as a function
of the reduced temperature. The symbols O and [J denote I}
and £ with subtraction of the background intensity, respectively,
and the symbol A denotes them without subtracting it. The
slopes of the respective data points near the critical point give
¥=1.25%£0.02 and v=0.63+0.02 with £§,=1.62+0.05 nm. A
clear crossover from Ising to mean-field behavior is not ob-
served in the experimental temperature range. The solid curve is
the susceptibility calculated from the crossover function with
G;=2X 1072 fitted to the experimental data.
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£=[1+2.3335(0)4/7 17~ 1/4(§(0)~!
+[142.33385(0)2/ 178} | 27)

where #=7/G, with 7=|T,'=T7Y/T/! and
S0)=s (0)G;/Cyr. Cumr is a characteristic parameter,
being the critical amplitude of the susceptibility of the
mean-field approximation. A is the universal correction
to the scaling exponent and is 0.5. The results for I’
and & obtained without subtracting the background in-
tensity are also plotted in Fig. 5 in order to examine the
crossover behavior. The difference between the subtract-
ed and the unsubtracted data is negligibly small except
for a few data points far away from the critical point.
Since the scattered light intensity is not calibrated to give
the absolute static structure function in our case, we
could not obtain the parameter Cyy in the crossover
function. However, we can evaluate G; roughly as about
2X107? in a good approximation from the overall
characteristics of the crossover function and in reason-
able agreement with the results of Meier et al. [34], al-
though a small deviation for the two data points farthest
from the critical point is observed. Schwahn et al. have
pointed out that the mean-field approximation becomes
valid enough above £=300G; and the critical composi-
tion fluctuations are still strong enough even at 15C
away from T, [38]. Therefore the procedure for extract-
ing the critical part of the susceptibility by subtracting
the scattered intensity at 15'C away from T, is not exact
enough. However, the essential critical behavior is the
same for both the subtracted and unsubtracted methods,
as is shown in Fig. 5. The G; value is considerably larger
than the prediction of de Gennes, G; < N ! with N being
the degree of polymerization [8]. The breakdown of N !
scaling of G; could be related to the fact that sufficient
entanglements between polymer chains are not formed in
the present system. Unexpectedly large values of G; have
been observed and discussed by Schwahn et al. in rela-
tion to the nonuniversality of G; and the free volume
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effect [38-40]. This wide critical region for polymer
blend systems may result in the rather easy experimental
ascertainment of the three-dimensional Ising model
universality and of the breakdown of the mean-field ap-
proximation for polymer blends, even without approach-
ing the immediate neighborhood of the critical point and
the accurate determination of the critical point.

Figure 6 shows the double-logarithmic plot of £2/I vs
£ Since £?/I, is in proportion to e¥”%
=(g~¥)®¥77)/¥=(g™")" near the critical point, the slope
of this plot gives the exponent 7. The linearity of the data
is good, indicating the validity of the hyperscaling rela-
tion, and 7=0.038+0.003 was obtained. This value is in
very good agreement with the results for binary liquid
mixtures and the three-dimensional Ising model.
Janssen, Schwahn, and Springer obtained %»=0.047 for
d-PB-PS by SANS [37]. Schwahn, Mortensen, and
Janssen investigated 7 in both the stable and unstable re-
gions. The 7 value of 0.038 obtained in the stable region
is in good agreement with the renormalization-group pre-
diction, but a negative n value was observed in the unsta-
ble region [41].

C. Turbidity

Since the Ornstein-Zernike form for the correlation
function is valid for the present system, the turbidity
should be represented by Eq. (7). Figure 7 shows the
double-logarithmic plot of the turbidity as a function of
the reduced temperature. Since the difference between
the refractive index of the respective polymers is small,
the turbidity is relatively low (r~0.2 at e~10"%. The
exponent ¥ and v were determined by a nonlinear least
squares fit to Eq. (7). The fitting was good, as shown in
the inset deviations in Fig. 7, and y=1.20£0.06 and
v=0.6510.03 were obtained together with £,=1.37
+0.35 nm. These values are in reasonable agreement
with the exponent values of the static light scattering ex-
periment because of the monotonic nature of turbidity.

1072
— - o
2 o
5 - © OW
a o FIG. 6. Double-logarithmic plot of £2/I, vs
= - £. The straight line has a slope of
e 0.038+0.003, which corresponds to the ex-
~ ponent 7.
N B
=4
O
-—
-3 ] ] I T B 1 ] L1 11
10 =
107" 10 ° 10!
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FIG. 7. Double-logarithmic plot of turbidi-
ty as a function of the reduced temperature €.
The solid curve is the one fitted by Eq. (7) with
v=0.65x£0.03, v =1.20%0.06, and
&=1.371+0.35 nm.
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D. Shear viscosity

The result for the shear viscosity measured directly us-
ing the modified Ubbelohde viscometer is shown in Fig.
8. The flow time close to T, became about 10* s and the
magnitude of the shear viscosity was about 4 P. Since a
weak critical anomaly in the shear viscosity appears near
the critical point, the background viscosity 7z was evalu-
ated using five points in the range 10°/T=3.175-3.247.
The resultant background shear viscosity Inmp is ex-
pressed well by the Arrhenius equation 7z=—6.168
+2.285X 10%/T.

71/7p is plotted double logarithmically as a function of
the reduced temperature in Fig. 9. The data points show
a clear deviation from the linearity very near T,. The
shear rate at the closest temperature to T, is very low
and is evaluated to be about 2 s~!. Because the magni-
tude of 7 is very large ( ~4 P), the shear effect to the crit-
ical fluctuation becomes non-negligible. According to the

107!

theory of Onuki and co-workers [10,26], the crossover
from weak shear to strong shear may take place at
around T defined by Eq. (25). The value of T, —T, is
predicted to be 0.77 K. This temperature is located near
where 7/7p starts to show a deviation from linearity,
and the reduction of critical fluctuation due to a finite
shear rate is detected clearly. Therefore the shift of the
critical temperature should be taken into account, and it
was evaluated to be 64 mK according to Eq. (26). Figure
9 was drawn considering this shift of the critical tempera-
ture.

The evaluation of the exponent ¢ was carried out using
the data points in the middle portion of the figure, where
the linearity is good, and ¢=0.029+0.03 was obtained.
Similarly Q, in Eq. (16) was obtained as 3.91X 10° cm ™!
or Qo !=25.6 nm. The exponent z was obtained as
0.046+0.007 from the relation of Eq. (24) using v=0.63.
The value 0.054 for the exponent z is predicted from
mode coupling theory and is in reasonable agreement
with the above experimental result [25].
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— FIG. 8.. Shear viscosity of critical PDMS-
’E_ PEMS mixture as a function of the inverse
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) background viscosity.
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FIG. 9. Inn/7mp vs Ine. The straight line has
a slope —0.029(¢=0.029+0.003). In the left
side of the figure 17/7p shows a deviation from
a straight line, indicating the reduction of fluc-
tuation due to a finite shear rate. The cross-
over temperature T is 7, +0.77 K.
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E. Diffusion coefficient

The measured time correlation functions showed good
single-exponential decay functions with time, and the de-
cay rate or Rayleigh linewidth I", at the scattering vector
q was obtained from the fitting of the initial slope. The
decay rate is shown in Fig. 10 as a function of €. A
temperature-independent I'; is obtained close to T, as
observed in the usual dynamic critical phenomena. I
varies from ¢? dependence corresponding to the hydro-
dynamic region to nondiffusive ¢ dependence on ap-
proaching 7T.. The diffusion coefficient is shown in Fig.
11; it is g dependent near T, and becomes g independent
far away from T,.

The diffusion coefficient can be divided into two parts,
the critical part and the background part, as in Eq. (14).
In order to examine the dynamical critical behavior it is
necessary to evaluate the background contribution. We
selected the method of Burstyn et al. [20] of Eq. (20) for

the background estimation. g, is related to both Q, and
gp- Although Q, is obtained from the measurement of
shear viscosity, we need to evaluate g,. The procedure of
Oxtoby and Gelbart [22] gives g5, !=0 and a too large
g. ! as noted by Burstyn et al. [20]. Therefore we used
the method of Burstyn et al. as g.=qp, and g, '=6.8
nm was obtained. It should be noted that this procedure
gives g5, !=6.8 nm too, and this value is quite compara-
ble with the value of 7.5 nm of Meier, Momper, and Fish-
er [3].

Figure 12 shows the reduced diffusion coefficient as a
function of the scaling variable g£. The g§& value reaches
almost 20 and the critical nondiffusive region is realized.
The solid line shows the Kawasaki function Qg (g¢) for
the dynamic scaling function where the shear viscosity is
corrected for zero shear rate. The experimental data
points at three different scattering angles do not collapse
completely to form a single master curve and show a little
systematic deviation from each other. This fact might re-
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sult from the inaccuracy of the determination of g,, or
could mean that the time correlation function has a con-
tribution from some other mode (for example, entangle-
ment) than the mutual diffusional mode. At present the
definite reason is not clear. However, the overall charac-
teristics of the data points show a universal nature,
confirming the validity of dynamical scaling for the
order-parameter fluctuations and a deviation from
Qg (g&) especially at large g&. The dotted curve is the
corrected dynamic scaling function obtained from Egs.
(18) and (19) where R and b were set at 1.01 and 0.5, re-
spectively. The agreement between the dotted curve and
the experimental D* is rather satisfying and shows the
validity of the corrected dynamic scaling function espe-
cially for 6=90".

V. CONCLUSION

In this paper we investigated static and dynamic criti-
cal behavior using a polymer-polymer mixture of well

102

fractionated PDMS and PEMS with molecular weights of
the order of 10*. The essential points of the results are
summarized as follows.

(1) A very precise coexistence curve was obtained and
the critical exponent B is obtained as 0.327+0.003 at a
temperature close to the critical point for the polymer
blend. The critical composition and temperature of the
polymer blend are obtained accurately, and a very close
approach to the critical mixing point was possible.

(2) Static structure function experiments gave the criti-
cal exponents y=1.25+0.02, v=0.63+0.02, and
7n=0.038+0.003 with £,=1.621+0.05 nm. A turbidity
measurement gave reasonable agreement with the results
of the static light scattering experiments. By the accurate
determination of and the close approach to the critical
point, it was firmly ascertained that the obtained critical
exponents are in very good agreement with the three-
dimensional Ising model. The polymer blend in the close
neighborhood of the critical point belongs to the univer-
sality class of the three-dimensional Ising model, similar-
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FIG. 12. Reduced diffusion coefficient D*
(=6méD, /kpT) plotted double logarithmic-
ally as a function of the scaling variable g&.
The notation for the symbols is the same as in
Fig. 10. The solid curve represents the
Kawasaki function Qg(gg&) and the dotted
curve represents the corrected dynamic scaling
function proposed by Burstyn et al. [20] with
R =1.01 and b=0.5, showing good agreement
with the experimental D *.
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ly to simple binary liquid mixtures and polymer solutions.

(3) The crossover from Ising behavior to mean-field
behavior was not observed clearly in the present experi-
ment. The observation for the present polymer blend is
consistent with the crossover function of recent theoreti-
cal work, indicating an unexpectedly wide critical region
different from the prediction of de Gennes. A full under-
standing of the crossover behavior still needs further ex-
perimental study for a system having smaller G; (larger
molecular weight) over a wide temperature range.

(4) The shear viscosity of the critical polymer blend
was directly measured and the reduction of the order-
parameter fluctuation due to the finite shear rate was
detected. The background viscosity is well expressed by
an Arrhenius-type equation. The critical exponents
¢=0.029+0.003 and z=0.04610.007 are in good agree-
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ment with the mode coupling theory.

(5) The diffusion coefficient shows the validity of the
dynamical scaling and the dynamic scaling function is
well expressed by the dynamic scaling function of
corrected mode coupling theory. The background contri-
bution to the diffusion coefficient for the polymer blend is
properly evaluated, although further experimental study
is still necessary for polymer blends.
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